Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Arch Pharm Res ; 45(1): 51-62, 2022 Jan.
Article En | MEDLINE | ID: mdl-34984603

Asian sand dust (ASD), which mainly originates in China and Mongolia in the spring and blows into Korea, can exacerbate respiratory and immunological diseases. This study aims to observe effects of co-exposure to ASD on ovalbumin (OVA)-induced asthmatic lung inflammation and of treatment with a phosphodiesterase 7 (PDE7) inhibitor in a mouse model. The challenge with OVA increased airway hyperresponsiveness (AHR) and inflammatory cell infiltration into the lung tissue. Interleukin (IL)-13, tumor necrosis factor-alpha, monocyte-protein-1, mucin, and antigen-specific IgE and IgG1 production increased in mouse serum. The co-exposure of ASD significantly exacerbated these effects in this asthma model. Notably, the administration of a PDE7 inhibitor, BRL-50481 (BRL), significantly reduced AHR, infiltration of inflammatory cells into the lungs, and the levels of type 2 T helper cell-related cytokines, antigen-specific immunoglobulins, and mucin. Thus, the administration of BRL ameliorated OVA-induced allergic asthmatic responses exacerbated by co-exposure to ASD. This study suggests that PDE7 inhibition can be a therapeutic strategy for inflammatory lung diseases and asthma via the regulation of T lymphocytes and reduction of IL-13, and, consequently, mucin production.


Anti-Inflammatory Agents , Asthma , Cyclic Nucleotide Phosphodiesterases, Type 7 , Pneumonia , Animals , Mice , Anti-Inflammatory Agents/therapeutic use , Asthma/drug therapy , Asthma/etiology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cyclic Nucleotide Phosphodiesterases, Type 7/antagonists & inhibitors , Cytokines/analysis , Disease Models, Animal , Dust , Fluorescent Antibody Technique , Inhalation Exposure/adverse effects , Lung/pathology , Mice, Inbred BALB C , Ovalbumin/adverse effects , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/pathology , Sand
2.
PLoS One ; 16(4): e0251012, 2021.
Article En | MEDLINE | ID: mdl-33914833

Asthma is a well-known bronchial disease that causes bronchial inflammation, narrowing of the bronchial tubes, and bronchial mucus secretion, leading to bronchial blockade. In this study, we investigated the association between phosphodiesterase (PDE), specifically PDE1, and asthma using 3-isobutyl-1-methylxanthine (IBMX; a non-specific PDE inhibitor) and vinpocetine (Vinp; a PDE1 inhibitor). Balb/c mice were randomized to five treatment groups: control, ovalbumin (OVA), OVA + IBMX, OVA + Vinp, and OVA + dexamethasone (Dex). All mice were sensitized and challenged with OVA, except for the control group. IBMX, Vinp, or Dex was intraperitoneally administered 1 h before the challenge. Vinp treatment significantly inhibited the increase in airway hyper-responsiveness (P<0.001) and reduced the number of inflammatory cells, particularly eosinophils, in the lungs (P<0.01). It also ameliorated the damage to the bronchi and alveoli and decreased the OVA-specific IgE levels in serum, an indicator of allergic inflammation increased by OVA (P<0.05). Furthermore, the increase in interleukin-13, a known Th2 cytokine, was significantly decreased by Vinp (P<0.05), and Vinp regulated the release and mRNA expression of macrophage inflammatory protein-1ß (MIP-1ß) increased by OVA (P<0.05). Taken together, these results suggest that PDE1 is associated with allergic lung inflammation induced by OVA. Thus, PDE1 inhibitors can be a promising therapeutic target for the treatment of asthma.


Anti-Inflammatory Agents/administration & dosage , Asthma/drug therapy , Chemokine CCL4/genetics , Down-Regulation , Ovalbumin/adverse effects , Vinca Alkaloids/administration & dosage , 1-Methyl-3-isobutylxanthine/administration & dosage , 1-Methyl-3-isobutylxanthine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Asthma/chemically induced , Asthma/genetics , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Disease Models, Animal , Gene Expression Regulation/drug effects , Lung/drug effects , Lung/immunology , Male , Mice , Mice, Inbred BALB C , Random Allocation , Vinca Alkaloids/pharmacology
3.
Article En | MEDLINE | ID: mdl-33519946

Pinus thunbergii Parl. (PTP) has traditionally been used for edible and medicinal purposes to treat several disorders, including diabetes and neuralgia. Therefore, this study sought to evaluate the inhibitory effects of PTP leaf ethanol extracts on acute inflammation. Moreover, the reactive oxygen species (ROS) scavenging activity, superoxide dismutase (SOD) activity, lipopolysaccharide (LPS)-induced nitric oxide (NO) generation, and H2O2-induced lipid peroxidation capacity of PTP were assessed in vitro in RAW 264.7 macrophages. Our results suggest that PTP prevents cell damage caused by oxidative free radicals and downregulates the expression of LPS-induced inflammation-associated factors including inducible nitric oxidase synthetase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). PTP inhibited NO production by 53.5% (P < 0.05) and iNOS expression by 71.5% (P < 0.01) at 100 µg/mL. PTP at 100 µg/mL also inhibited ROS generation by 58.2% (P < 0.01) and SOD activity by 29.3%, as well as COX-2 expression by 83.3% (P < 0.01) and PGE2 expression by 98.6% (P < 0.01). The anti-inflammatory effects of PTP were confirmed in vivo using an arachidonic acid (AA)-induced ear edema mouse model. Ear thickness and myeloperoxidase (MPO) activity were evaluated as indicators of inflammation. PTP inhibited edema formation by 64.5% (P < 0.05) at 1.0 mg/ear. A total of 16 metabolites were identified in PTP extracts and categorized into subgroups, including two phenolic acids (mainly quinic acid), seven flavonoids, five lignans, one sesquiterpenoid, and one long-chain fatty acid. Therefore, our results suggest that PTP possesses anti-inflammatory properties.

...